
Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 25 April 2017
Accepted: 28 November 2017

E-mail addresses:
lala.s.riza@upi.edu, lala_s_riza@yahoo.com (Lala Septem Riza),
j.aria.utama@upi.edu (Judhistira Aria Utama),
syandi.mufti@student.upi.edu (Syandi Mufti Putra),
fmsimatupang@yahoo.com (Ferry Mukharradi Simatupang),
eddypn@upi.edu (Eddy Prasetyo Nugroho)
*Corresponding Author

Parallel Exponential Smoothing Using the Bootstrap Method in
R for Forecasting Asteroid’s Orbital Elements

Lala Septem Riza1*, Judhistira Aria Utama2, Syandi Mufti Putra1,
Ferry Mukharradi Simatupang3 and Eddy Prasetyo Nugroho1

1Department of Computer Science Education, Universitas Pendidikan Indonesia, Jl. Setiabudhi, Bandung,
Indonesia
2Department of Physics Education, Universitas Pendidikan Indonesia, Jl. Setiabudhi, Bandung, Indonesia
3Astronomy Research Division, Institut Teknologi Bandung, Jl. Ganesha, Bandung, Indonesia

ABSTRACT

Nowadays, large datasets become main intentions of researchers in many areas. However, a challenge
that still remains mainly unresolved is the lack of strategies used for analysing large time-series datasets
in parallel. Therefore, this research aims to design a model of exponential smoothing working on
parallel computing by using the bootstrap method. Three parts will be considered in the model: data pre-
processing using the bootstrap methods, parallel exponential smoothing, and aggregation of results to be
the final predicted values. To implement the processes, some packages available in the R environment
such as “foreach”, “forecast” and “doParallel” are utilised. R environment provides many packages for
scientific computing, data analysis, time-series analysis and high performance computing. For testing
and validating the proposed model and implementation, a case study in astronomy, i.e. the prediction of
asteroid’s orbital elements, was done. Moreover, a comparison and analysis with the results produced by
algorithm of Regularized Mix Variable Symplectic 4 Yarkovsky Effect (RMVS4-YE) is also presented
in this paper to provide a high level of confidence on the proposed model.

Keywords: Exponential smoothing, orbital element, parallel computing, R programming language, time
series analysis

INTRODUCTION

Currently, the flood of data can no longer be
stopped and thus, it inundates every corner of
our daily activities. In other words, data have
been released in a high amount and at a high
speed with complex formats and from various
sources. Based on a report from International
Data Corporation in 2011, the overall digital

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

442 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

data volume in the world was 1.8 zettabytes, which was expected to grow by nearly nine times
within the next five years (Gantz & Reinsel, 2011). A survey by Troester (2015) revealed that
Facebook handles more than 250 million photo uploads and the interactions of 800 million
active users with more than 900 million objects (pages, groups, etc.) on a daily basis. Wal-Mart
processes more than a million customer transactions each hour and imports those into databases
that are estimated to contain more than 2.5 petabytes of data. This phenomenon offers two
opposing sides. First, it brings emerging problems since available tools and algorithms have
difficulties in handling such large data efficiently. At the same time, however, this condition
offers great advantages if we are able to extract knowledge from data, such as in making a
better decision, predicting a future action, and describing a current situation, etc.

The term ‘Big Data’ has been widely used for expressing the above phenomenon. It was
introduced by computer scientists several years ago. In 2012, Gartner, Beyer & Laney (2012),
stated that “Big Data is high-volume, high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information processing for enhanced insight and
decision making.” According to this definition, there are 3Vs (which are volume, velocity,
and variety) that should be taken into account. Basically, there are two issues related to the
volume of Big Data. First, current computers and algorithms cannot handle massive datasets
efficiently. Second, current storage management systems are also facing the same issue. In
relation to the second issue, which is the aim of this research, there are many techniques that
can be used, including data sampling and memory managements (i.e., to create, store, access
and manipulate massive matrices) by allocating shared memory and using memory-mapped
files (Kane, Emerson, & Weston, 2013), parallel and distributed computing (Zomaya, 1996),
and Big Data platform (Dean & Ghemawat, 2008; Murthy, Vavilapalli, Eadline, Niemiec, &
Markham, 2013).

In this research, we attempted to design a model and implement it on parallel computing
to deal with forecasting large-time series datasets in the R programming language. In order
to apply for prediction, we modified exponential smoothing so that it could be run in parallel.
In short, we constructed three phases in parallel exponential smoothing, as follows: (i) data
pre-processing by utilising the bootstrap method, (ii) conducting exponential smoothing in a
parallel way by using three software libraries in R: “forecast”, “foreach”, and “doParallel”,
and then (iii) aggregating results to obtain the final predicted values.

Moreover, some experiments are presented to validate the model. These experiments
used datasets in astronomy, which are asteroid’s orbital elements. The data involved more
than 400,000 rows and 6 important parameters in Kepler Components (i.e., a, e, i, ω, Ω and
M representing semi major axis, eccentricity, inclination, argument of perihelion, longitude of
ascending node and mean anomaly, respectively). The position and velocity of celestial bodies
in their orbit at a certain time is expressed by 4 elements orbits. The size and shape of the orbit
are represented by the element of a and e, respectively. Meanwhile, the element of ϖ(=ω+Ω),
which is also known as the longitude of perihelion, specifies the orientation, and the other
element, M, specifies the position or phase of celestial bodies in their orbit.

Parallel Exponential Smoothing

443Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

TIME SERIES ANALYSIS

Introduction to Time Series Analysis

Time series datasets can be generated in econometrics, finance, weather station, earthquake,
astronomy, medical clinic, energy, and other domains. For example, in finance, we obtained
time series datasets produced by the S&P500 daily stock index, as illustrated in Figure 1 below.

7	
	

TIME SERIES ANALYSIS

Introduction to Time Series Analysis

Time series datasets can be generated in econometrics, finance, weather station,

earthquake, astronomy, medical clinic, energy, and other domains. For

example, in finance, we obtained time series datasets produced by the S&P500

daily stock index, as illustrated in Figure 1 below.

Figure 1. S&P500 Daily Stock Index (January 4, 2006, to December 16, 2016)

0	

500	

1000	

1500	

2000	

2500	

Figure 1. S&P500 Daily Stock Index (January 4, 2006, to December 16, 2016)

To study these datasets thoroughly, it is a common way to consider the logarithm return, which
is defined as follows (Palma, 2016).

 (1)

where Pt represents the price or the index value at time, t. The log returns are displayed in
Figure 2, in which the great volatility could be seen as happening sometime in January 2009.

8	
	

To study these datasets thoroughly, it is a common way to consider the

logarithm return, which is defined as follows (Palma, 2016).

𝑟𝑟! = log
𝑃𝑃!
𝑃𝑃!!!

= log𝑃𝑃! − log𝑃𝑃!!! (1)

where Pt represents the price or the index value at time, t. The log returns are

displayed in Figure 2, in which the great volatility could be seen as happening

sometime in January 2009.

Figure 2. S&P500 Daily Log Returns (4 January 2006 to 16 December 2016)

-0.06	

-0.04	

-0.02	

0	

0.02	

0.04	

0.06	

Figure 2. S&P500 Daily Log Returns (4 January 2006 to 16 December 2016)

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

444 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

According to the example above, we can define time series datasets as a time-ordered sequence
of observation values of a defined variable at a certain time interval, Δt (Palit & Popovic, 2006).
The data can be represented as a set of discrete values (i.e., x1, x2,…, xn). The main properties of
time series are stationarity, linearity, trend, and seasonality. The first term means that the mean
value and variance of data should be constant over time and the covariance value between xt
and xt-d is dependent on the distance between those two data points and constant over time.
Linearity refers to the sequence of observation values can be represented by a linear function.
The trend component of time series datasets is a change on the local and global increases
or decreases of data values in long-term periods. The last property of time series, which is
seasonality, refers to changing on pattern periodically (Palit & Popovic, 2006).

Moreover, time series analysis focused on studying patterns or structures of the datasets so
that we could make a better decision and solve the issues on the hand. Basically, the analysis
involves the following activities: (i) definition and description of time series, (ii) model
construction, (iii) forecasting or prediction of future data, and (iv) clustering to determine the
characteristics of data (Riza, 2016b). In this research, we focused on forecasting or predicting of
future data by considering historical data. Forecasting can be defined as a given set of observed
values x1, x2, x3, ..., xn of a time series, the future value xn+1, xn+2,…, should be estimated (Palit
& Popovic, 2006). Moreover, Palit and Popovic (2006) divided strategies on forecasting into
the following groups: using trend analysis, regression approaches, the Box-Jenkins methods
and smoothing methods. Firstly, the trend analysis utilises linear or nonlinear regression (e.g.,
quadratic and exponential functions). In regression analysis, we can perform a mathematical
tool mapping input variables and its output. Recently, in addition to using approaches on the
mathematics field, machine-learning techniques are conducted. For example, a research by
Zhang (2012) provides a survey on neural network applications in time series forecasting such
as air pollutant concentration, stock index option price, etc. A family of forecasting methods
proposed by Box and Jenkins (Box, Jenkins, Reinsel, & Ljung, 2015) consists of Autoregressive
Model (AR), Moving-average Model (MA), etc. The last group being focused in this paper,
which is smoothing method, is a set of techniques based on reduction of irregularities or
random fluctuations in time series data so that we could obtain a clean time series pattern out
of contaminated observation data (Palit & Popovic, 2006). Furthermore, useful explanations
on time series analysis can be found from in the works of Kirchgässner, Wolters, and Hassler
(2012) and Derryberry (2014).

Smoothing Methods for Time Series Forecasting

As mentioned previously, smoothing can be defined as a technique by conducting reduction
of irregularities or random fluctuations in time series datasets to obtain a clean time series
pattern out of contaminated observation data (Palit & Popovic, 2006). There are two types of
smoothing methods, namely moving-average smoothing and exponential smoothing.

The following is a formula of moving-average smoothing for prediction of future values:

 (2)

Parallel Exponential Smoothing

445Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

It can be seen that the equation basically averages the past values for reducing the random
variations present in n observation data. Another variant of the equation is by using weigh on
each the past values, as illustrated in the following equation:

 (3)

Thus, the method can be regarded as easy to understand and simple to use. However, in the
case of the weighted moving average, it is difficult to choose the optimal values for each
weight of the past values.

The second method, which is exponential smoothing, is a set of techniques where the
weights are decreased exponentially as the observations get older (Hyndman, Koehler, Ord,
& Snyder, 2008). According to the taxonomy of proposed by Pegels (1969), classification of
exponential smoothing methods was obtained. It was improved by Gardner Jr. (1985), modified
by Hyndman, Koehler, Snyder, and Grose (2002), and later extended by Taylor (2003), giving
the fifteen methods in Table 1 below.

Table 1
Classification of exponential smoothing methods

Trend Component Seasonal Components
N (None) A (Adaptive) M (Multiplicative)

N (None) N, N N, A N, M
A (Adaptive) A, N A, A A, M
Ad (Adaptive Damped) Ad, N Ad, A Ad, M
M (Multiplicative) M, N M, A M, M
Md (Multiplicative damped) Md, N Md, A Md, M

There is another name for some cells such as follows:

• cell (N,N) is the simple exponential smoothing (or SES) method, which is defined as
(Brown, 1959):

 (4)

 where α is a constant between 0 and 1.

• cell (A,N) is named Holt’s linear method, which is defined as (Holt, 1957):

 ° Level:

 (5)

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

446 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

 ° Growth:

 (6)

 ° Forecast:

 (7)

where α and β* are a contant between 0 and 1.

For a complete list of the exponential smoothing included in Table 1, please refer to Hyndman
et al. (2008).

A Brief Survey on the Implementations of Parallel Computing in Time Series
Analysis

In this section, we present a brief review on some strategies and implementations of
parallelisation of methods in time series analysis, especially for forecasting. It is presented to
provide some related works instead of providing a comprehensive survey.

Table 2 shows a summary of the survey conducted in Scopus related to the following
keywords: “time series and parallel computing” and “exponential smoothing and large data.”
It can be seen that researchers have been attempting to find suitable strategies to deal with
large datasets or Big Data. For example, Big Data platform, MapReduce, is used in Mirko and
Kantelhardt (2013), Sheng, Zhao, Leung and Wang (2013), etc., whereas Message Passing
Interface (MPI) is utilised in the research conducted by Górriz, Algeciras, Puntonet, Salmerón,
and Martin-Clemente (2004).

INTRODUCTION TO R AND ITS ECOSYSTEM

In this section, we briefly provide an introduction to R and its ecosystem. In addition, some
examples of implementations R packages used for parallel computing and time series analysis
will also be given in this section. Therefore, some reasons why we are using R in this research
are presented.

Introduction to R Programming Language

R is an open-source programming language and software environment used for scientific
computing, data analysis, visualisation, time series analysis, high performance computing,
etc. (Ihaka & Gentleman, 1996). Furthermore, regarding a survey conducted by KDnuggets
(Piatetsky, 2016), R takes the first place for the programming language used for an analytics/
data mining/data science in 2016 and 2015, as shown in Figure 3.

Parallel Exponential Smoothing

447Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

17	
	

Figure 3. KDnuggets Analytics/Data Science 2016 Software Poll: Top 10 Most

Popular Tools (Piatetsky, 2016)

Figure 3. KDnuggets analytics/data science 2016 software poll: top 10 most popular tools (Piatetsky, 2016)

Table 2
A short review on implementations time series analysis in parallel computing

No Refs Objectives Implemented Methods Strategies for
Parallelization

1 Mirko &
Kantelhardt,
(2013)

To implement statistical
time series analysis, such as
correlation, autocorrelation,
in Big Data/large time series
datasets

Correlation and
autocorrelation

MapReduce and
Hadoop platform

2 Sheng et al.
(2013)

To design and implement
Echo state network (ESN)
for prediction time series
b y u t i l i z i n g E x t e n d e d
Kalman Filter (EKF) in
parallel computing by using
MapReduce

Extended Kalman Filter MapReduce

3 Górriz et al.
(2004).

To implement a Parallel
Neural Network (Cross-over
Prediction Model) for time
series forecasting

Neural network PVM (“Parallel
Virtual Machine”)
and MPI (”Message
Passing Interface”

4 Zhao, Bryan,
King, Song,
& Yu (2012)

To implement an array-
based algorithm to calculate
summary statistics for long
time-series daily grid climate
data sets

Spatial analysis The Parallel Python
(PP) package

5 Liu & He
(2012)

To f i n d t h e o p t i m a l
segmentation scheme of time
series with a low execution
time.

a modif ied Ant Colony
Optimizat ion algori thm
(WACOS)

OPenMP library in
C++

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

448 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

From the programming language perspective, the R language has some characteristics that
render it to offer some advantages (Wickham, 2014) such as providing complete data structures
to ease data processing like list, matrix, vector, and data.frame.

Mostly, packages developed in the R framework are included in the following repositories:
CRAN and the Bioconductor project. CRAN (Wickham, 2014) can be found at http://cran.r-
project.org/, which is maintained through the efforts of volunteers (the “CRAN team”) and
the resources of the R Foundation and the employers of those volunteers (WU Wien, TU
Dortmund, U Oxford, AT\&T Research). Meanwhile, Bioconductor (http://www.bioconductor.
org/) is an open source, open development software project to provide R tools for the analysis
and comprehension of high-throughput genomic data. Now, there are over 8000 packages
available in CRAN, and these are classified into more than 30 task views. For instance, the
task view of Time Series Analysis contains more than 30 R packages such as, the “forecast”
package which involves methods and tools for displaying and analysing univariate time series
forecasts (Hyndman & Khandakar, 2008).

Parallel Computing in R: “foreach” and “doParallel”

Firstly, we need to define what the definition of parallel computing is. It refers to a kind
of computation in which many calculations or the execution of processes is conducted
simultaneously (Gottlieb & Almasi, 1989). In other words, the processes need to be divided
into some smaller modules so that these parts are executed at the same time. There are at
least four types of parallel computing: bit-level parallelism, instruction-level parallelism, task
parallelism, and data parallelism.

In the R ecosystem, there are more than 30 packages available at CRAN (https://CRAN.R-
project.org/view=HighPerformanceComputing), which are used for high performance and
parallel computing with R. In this CRAN Task View, we can find several groups of parallel
computing such as Explicit Parallelism (e.g., the “pbdMPI” and “foreach” package), Grid
Computing (e.g., the “multiR” package), etc.

6 Xie,
Wulamu,
Wang,
(2014)

To p e r f o r m c l u s t e r i n g
analysis for time series data

Canopy and K-means based
on SVD

MapReduce and
 Hadoop platform

7 Qian et al.
(2014)

To present our parallel design
of time series analysis and
implementation of ARIMA
modell ing in MADlib’s
framework.

ARIMA MADlib on
Greenplum database
and PostgreSQL
database

Table 2 (continue)

Parallel Exponential Smoothing

449Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

The “foreach” package was developed by Calaway et al. (2015). It provides a new
looping mechanism for executing R code simultaneously. Hence, the main reason for using the
“foreach” package is that parallel computing on multiple processors/cores and multiple nodes
of a cluster are available. Moreover, the “doParallel” package has a role as a backend engine
for the “foreach” package. It provides a mechanism needed to execute the foreach command
in parallel. It means that the “foreach” package must be used together with “doParallel” to
execute code in parallel.

The following R code is a simple example to show how the “doParallel” and “foreach”
perform a task in parallel:

 R> library(foreach)

 R> library(doParallel)

 R> registerDoParallel(cores=2)

 R> foreach(i=1:3) %dopar% sqrt(i)

The code on the first and second lines means we load the following packages: “foreach” and
“doParallel”. The second line shows that we use multicore-like functionality by defining 2
cores, whereas the last one is that we perform the square root command (i.e., sqrt()) of the
three objects in parallel with 2 cores. Therefore, it yields the following results, as follows: 1,
1.414214, and 1.732051.

Time Series Analysis in R: “forecast”

The next package used in this research is “forecast.” It provides automatic forecasting using
exponential smoothing, ARIMA models, and other common forecasting methods (Hyndman
& Khandakar, 2008). Related to this research, the following is the signature of one function
included in the “forecast” package:

 holt(y, h=10, damped=FALSE, level=c(80,95), fan=FALSE, initial=c(“optimal”,”simple”),
exponential=FALSE, alpha=NULL, beta=NULL, lambda=NULL, biasadj=FALSE, x=y,
...)

The holt() function is used for predicting time series datasets based on the exponential
smoothing methods. It can be seen that this function has several arguments such as: y is a
numeric vector or time series, h is number of periods for forecasting/lead time, etc.

Design and Implementation of Parallel Exponential Smoothing

Figure 4 shows the model of parallel exponential smoothing utilising the package “forecast”,
“foreach”, and “doParallel” for forecasting time series data.

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

450 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

It can be seen that basically there are three main steps in this model, as follows:

1. Importing the original data (e.g., .csv, .xls, etc.) into an R object, which is data.frame. The
implementation of this step is as given in the following code:

 R> alldata <- read.table(“D:/bootstrap/follow1.out”,header=TRUE)

 The read.table() function is used for reading the data saved in “D:/bootstrap/follow1.out”
and saving into the variable alldata as data.frame.

2. This step is actually a main part of the model, which is, the computation of bootstrap and
exponential smoothing in parallel by utilising the packages: “forecast”, “foreach”, and
“doParallel”. In this step, we can divide them into three phases, as follows:
a. Loading and setting the computation in multicore. Firstly, we load the libraries by

executing the following code:

 library(foreach)

 library(doParallel)

	
Figure 4. The model of parallel exponential smoothing for forecasting time series data in multicore

Parallel Exponential Smoothing

451Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

 After importing the packages, the next code is to define the number of processors/
cores, as follows:

 R> cl <- makeCluster(nProcessor=2)

 R> registerDoParallel(cl)

 It can be seen from the above code that the number of cores is 2.

b. Developing the procedure of bootstrap on time series data. Bootstrap is a process
for selecting some data randomly with replacement so that this sample can represent
the whole dataset. It is aimed to make parallelisation by splitting the data. Before
explaining the implementation, we depict the processes on the bootstrap as in Figure
5. First, we need to define the number of fixed values (nfix) to be the beginning and
ending parts of the sample. Then, bootstrap is done to assign the values between the
fixed values. The processes will be repeated according to the defined number of sample
(nboot).

	
Figure 5. The procedure on the bootstrap method

The implementation of bootstrap can be seen in the following code:

boots <- function(alldata,nfix,nn){

 n<-nrow(alldata)

 a<-c(1:nfix)

 z<-c((n-nfix+1):n)

 i<-c(a,sample(c((nfix+1):(n-nfix-1)),nn,replace=T),z)

 x<-c(i[!duplicated(i)])

 ii<-c(1:length(x))

 temp<-list()

 tempData<-NA

 tempData[ii]<-NA

 temp$a<-tempData

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

452 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

 temp$e<-tempData

 temp$i<-tempData

 temp$O<-tempData

 temp$w_omega<-tempData

 temp$a[x]<-alldata$a[x]

 temp$e[x]<-alldata$e[x]

 temp$i[x]<-alldata$i[x]

 temp$O[x]<-alldata$O[x]

 temp$w_omega[x]<-alldata$w_omega[x]
 temp$a<-temp$a[!is.na(temp$a)]
 temp$e<-temp$e[!is.na(temp$e)]
 temp$i<-temp$i[!is.na(temp$i)]
 temp$O<-temp$O[!is.na(temp$O)]
 temp$w_omega<-temp$w_omega[!is.na(temp$w_omega)]
 return (temp)

 }
 It can be seen that the computation of bootstrap is actually on the fifth line. Then, the process

is repeated along with all columns of the data. In this case, we consider five columns, a, e,
i, O, and w_omega, which represent semi major axis, eccentricity, inclination, argument
of perihelion, and longitude of ascending node.

c. Prediction using exponential smoothing in parallel. This step is aimed to execute the
“forecast” package for forecasting by using exponential smoothing in the “foreach” and
“doParallel” package. It can be done by the following code:

 predValue <- foreach(icount(nboot), .combine=rbind, .export=ls(envir=globalenv()))
%dopar%{

 databaru<-boots(alldata,nfix,nn)

 numPoint<-nrow(databaru)

 a<-holt(databaru$a,h=nForecast)

 e<-holt(databaru$e,h=nForecast)

 i<-holt(databaru$i,h=nForecast)

 O<-holt(databaru$O,h=nForecast)

 w_omega<-holt(databaru$w_omega,h=nForecast)

 return(c(a,e,i,O,w_omega,numPoint,.combine=rbind))

 }

 Thus, after executing the boots() function, we call the holt() function included in the
“forecast” package on each column (i.e., a, e, i, O, and w_omega) on the foreach()
function.

Parallel Exponential Smoothing

453Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

3. Average the results for obtaining predicted values. As we have some results that are
according to the number of bootstrap samples, it is necessary to calculate the average
value. This can be done by executing the mean() function built in R.

EXPERIMENTATION ON THE CALCULATION OF ASTEROID’S ORBITAL
ELEMENT

In this section, we discuss three topics related to the experiment in this research. Firstly, we
briefly explain the problem statement, and then illustrate how we collect the data. Finally, the
experimental design is presented.

Problem Statement

Orbit calculations of celestial bodies in astronomy for a simple case is in the form of the two
isolated objects (two-body problem), i.e., a single object with a smaller mass is orbiting other
object that has a greater mass and under the influence of their mutual gravitational attraction
only. Indeed, the two objects are orbiting their common centre of mass, where the orbital
velocity and distance of each object from the common centre of mass are determined by
each object’s mass and their centre-to-centre distance. In the case of more than 2 objects are
considered (generally known as the N-body problem), the same equations of motion can be
expanded to the number of objects being simulated. In the implementation, the N-body problem
is solved using restricted tree-body problem approach, where the third object is considered to
have a negligible mass relative to the first and second objects. This approach is quite accurate
such as when the systems considered are the Sun-planet-natural/artificial satellite and sun-
planet-asteroid/comet as in this work.

The equation of motion for the N-body problem is (see, for example, Murray & Dermott,
1999) as follows:

 (8)

In equation (8), G is the universal gravitational constant and on the right hand side is the
total gravitational attraction of the whole bodies considered. Equation (8) cannot be solved
analytically but numerically for a certain time step in order to obtain a new position vector
until the desired time. Some integration techniques available can be employed to obtain the
numerical solution of equation (8), such as Wisdom-Holman Mapping (Wisdom & Holman,
1991), Regularised Mix Variable symplectic (Levison & Duncan, 1994), A fourth order T+U
symplectic (TU4) method (Candy & Rozmus, 1991), Bulirsch-Stoer method (Press, Teukolsky,
Vetterling, & Flannery, 1992), and so on.

Between the orbits of Mars and Jupiter (2.0 to 3.3 Astronomical Unit; 1 AU is defined as
the average distance between the Earth-Sun), there is a population of asteroids, space rocks of
various sizes that are remnants of the Solar system formation which failed to become a planet
due to gravitational perturbations of Jupiter. This area is known as the Main Belt. It is strongly
believed that this asteroid population is a major source of near-Earth asteroids (NEAs) (Bottke
et al., 2002; Greenstreet, Ngo, & Gladman, 2012). The population of asteroids with orbit such

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

454 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

that [q (asteroids’ perihelion distance – the closest distance of asteroids from the Sun) < 1.3 AU
and Q (asteroids’ aphelion distance – the furthest distance of asteroids from the Sun) > 0.98
AU] so the orbit bring them to near-Earth space. The mechanism that contributes to deliver the
asteroids in the Main Belt toward the near-Earth space could be a collision among the asteroids
which with the right post-collision velocity and trajectory immediately puts asteroids in the
resonance zone (Farinella, Gonczi, Froeschlé, & Froeschlé, 1993), which will further change
the orbit to become more elliptical or via slowly drift under the influence of the non-isotropic
thermal force (Yarkovsky effect) (Bottke et al., 2002).

While in the near-Earth space, asteroids could experience close encounter with particular
planets (Mercury, Venus, Earth and Mars). As a result of this close encounter, the asteroids may
be fragmented due to strong tidal force, or if they can survive, their orbit can change drastically
in a short time. Drastic changes in orbit occurred can change the fate of the asteroids in the
future, i.e. whether they will still be orbiting the Sun or even collide with massive objects in
the Solar system. Therefore, observational survey to find the presence of new asteroids and
continually observations post-close encounter of asteroids with massive objects is essential to
assess the probability of collision with the planets and the Sun in the future. The occurrence
of an asteroid’s close encounters with massive objects in the Solar System in the future can be
predicted by computing the orbit for a certain span of time. Given that the orbits of asteroids in
near-Earth space are very chaotic due to their close encounters with planets, orbit computation
for asteroids’ final fate prediction purpose is commonly done by generating some virtual
asteroids (VA) which has a slightly different orbital elements from the real one. Evolution of
the real and virtual asteroids’ orbital elements obtained during the considered span of time
will determine the orbital elements distribution, and where the most heavily populated cells
are likely located. These are shown in Figure 6 for asteroid 2012 DA14 (see, for example,
Wlodarczyk, 2012; Utama, Dermawan, Hidayat, & Fauzi, 2015) during our 106 years of orbital
computation forward experiment after its close encounter with the Earth on 15th February 2013.

	
Figure 6. The time spent (in thousand years, or residence time) by asteroid 2012 DA14 and its 120 clones in
cell (a, e) during 106 years orbital computation represents the expected orbital distribution. The colour scale
gives the average time (thousands of years per particle) spent in the different cells; black being the shortest,
while red is the longest. White corresponds to unvisited regions (left panel). Number of asteroids fall into
each cell (a, e). Red depicts the most frequent cells visited by asteroids, while black depicts cell most rarely
visited. White corresponds to unvisited region (right panel)

	

Parallel Exponential Smoothing

455Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

From the orbital computation, there are 9 clones of 120 that will end their life when colliding
with Venus (4 clones) and Earth (5 clones).

Data Gathering

Asteroid’s orbital elements data used in this work were obtained from NASA database (http://
ssd.jpl.nasa.gov/sbdb.cgi) with the initial value of orbital elements (see Table 3), while
description of each orbital element shown in Figure 7. The orbital evolution executed using
SWIFT integrator package (Levison & Duncan, 1994) had been modified, namely SWIFT
RMVS4YE, which has included non-isotropic thermal force in it (Dermawan, Hidayat, &
Utama, 2013). The RMVS4 scheme implemented in this integrator helps us to do computation
of orbital elements accurately, especially when a close encounter between asteroid with massive
objects occurs. By including the thermal force (Yarkovsky effect), the accurate orbit predictions
for long duration (> 105 years) computation can be reached.

Table 3
Orbital element of Asteroid used as a test case for parallel computing in this work

Orbital Element Value
a 1.2456 AU
e 0.33552
I 13°.3358
Ω 337°.2327
ω 276°.8451
M 191°.0565

39	
	

Figure 7. Six integration constants are needed to describe celestial

objects’ orbit. The constants are the longitude of ascending node Ω, the

argument of perihelion ω, the inclination i, the semi major axis a, the

eccentricity e and the time of perihelion passage τ [= (M x P/2π) + τ0,

where P is orbital period] (Source: Karttunen, Kröger, Oja, Poutanen, &

Donner, 2007).

Figure 7. Six integration constants are needed to describe celestial objects’ orbit. The constants are the longitude
of ascending node Ω, the argument of perihelion ω, the inclination i, the semi major axis a, the eccentricity e
and the time of perihelion passage τ [= (M x P/2π) + τ0, where P is orbital period]
(Source: Karttunen, Kröger, Oja, Poutanen, & Donner, 2007)

Experimental Design

In order to do the experiments efficiently, we designed the following two scenarios of prediction:
single computing and parallel computing. For the first scenario, we predicted 10 next point of

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

456 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

time, whereas in the second, several simulations were conducted with different as illustrated
in Table 4.

Table 4
Parameters on the parallel-computing scenario

Parameters Description Values
nProcessor Number of processors/cores 1 and 4
nboot Number of samples on bootstrap 4, 12, and 20
Nn Number of data point on each sample 1000, 10000, and 25000
nForecast Lead time 1 and 10
nfix Number of fixed values for the beginning and ending

parts of time series data after bootstrap
2 and 20

Table 5
MAPE calculation between exponential smoothing with single processor and the algorithm RMVS4-YE

Period A e I O w_omega Average (%)
1 0.000809240 0.044868466 0.010442664 0.039505848 0.011069138 0.021339071
2 0.022884474 0.058763748 0.003809124 0.037560265 0.009701406 0.026543803
3 0.037606712 0.104317766 0.063138274 0.070033749 0.008846505 0.056788601
4 0.045043056 0.068458498 0.065173303 0.062258119 0.007350644 0.049656724
5 0.037680306 0.064277164 0.060649023 0.054457305 0.007521384 0.044917036
6 0.037680306 0.055576884 0.058092212 0.063763096 0.013759502 0.045774400
7 0.022958057 0.083037792 0.062095493 0.078176277 0.019996522 0.053252828
8 0.022958057 0.078855233 0.070624528 0.074059252 0.016621183 0.052623651
9 0.023031641 0.076933502 0.073315612 0.062859932 0.008204252 0.048868988
10 0.030392229 0.043376160 0.064199768 0.063112270 0.013159997 0.042848085

Moreover, we compared the results with the algorithm RMVS4-YE by calculating Mean
Absolute Percentage Error (MAPE) defined, as follows:

 (9)

where x and f are the true and predicted values, while i and n are lead time and number of
observations/samples.

RESULTS AND DISCUSSION

As explained previously, in this experiment, there are two scenarios: prediction by using
exponential smoothing on single processor and prediction by using parallel exponential
smoothing on multicore. Therefore, results of the MAPE calculation in comparison with
those obtained from the Algorithm RMVS4-YE are presented in Table 5. In this case, we
predicted for 10 periods for five components of asteroid’s orbital element: a, e, i, O, w_omega,

Parallel Exponential Smoothing

457Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

representing semi major axis, eccentricity, inclination, argument of perihelion, and longitude of
ascending node. The last column is average of MAPE of all parameters. Moreover, the average
computation time of all simulation, which is 84.48 seconds, was also calculated.

Then, for the second scenario (i.e., using parallel exponential smoothing) 72 simulations
were performed based on the combinations of parameter given in Table 4. For example, Table
6 shows MAPE calculation on the first simulation that assigns the following parameters:
nProcessor = 1, nboot = 4, nfix = 2, nn = 1000, and nforecast = 1. It can be seen that the average
of MAPE in this case is around 0.312%.

Table 6
MAPE calculation of the first simulation in the second scenario

a E i O w_omega Average (%)
0.008680939 0.251733092 0.597202154 0.694654647 0.005684152 0.311590997

Because of the limited space in this paper, we recapitulated the complete results, which are
average of MAPE from 72 simulations on the second scenario, as illustrated in Table 7 below.

Table 7
The complete recapitulation of MAPE calculation of 72 simulations on scenario 2

No nProcesor nboot nfix nn nforecast Average
numPoint

Computation
Cost (s)

MAPE
Average (%)

1 1 4 2 1000 1 1003.750 1.7453090 0.31159100
2 1 4 2 1000 10 1003.000 1.8960360 1.94565918
3 1 4 20 1000 1 1039.750 1.7257320 0.15078242
4 1 4 20 1000 10 1038.500 1.6875560 1.05304777
5 1 4 2 10000 1 9908.750 4.5730320 0.04971548
6 1 4 2 10000 10 9902.000 4.8302820 0.28135093
7 1 4 20 10000 1 9939.250 4.4239750 0.02676445
8 1 4 20 10000 10 9940.750 4.4637740 0.14651301
9 1 4 2 25000 1 24394.750 10.5053300 0.02695131
10 1 12 2 25000 10 24403.750 9.9289680 0.12089122
11 1 12 20 25000 1 24441.500 10.1047500 0.02123174
12 1 12 20 25000 10 24426.250 9.1230160 0.09271730
13 1 12 2 1000 1 1002.667 3.1559090 0.41470090
14 1 12 2 1000 10 1002.917 2.8936640 2.07270682
15 1 12 20 1000 1 1039.000 2.9690490 0.15143420
16 1 12 20 1000 10 1039.333 2.9958390 0.82286152
17 1 12 2 10000 1 9907.083 12.6789100 0.04737498
18 1 12 2 10000 10 9903.500 12.9946800 0.27593724
19 1 12 20 10000 1 9941.500 11.6467000 0.02591236
20 1 12 20 10000 10 9943.333 12.6069800 0.15076421
21 1 12 2 25000 1 24378.080 29.9228700 0.02606734

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

458 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

22 1 12 2 25000 10 24394.000 28.3534500 0.12098353
23 1 12 20 25000 1 24421.000 28.0681100 0.02086259
24 1 12 20 25000 10 24439.080 31.4522200 0.09423594
25 1 20 2 1000 1 1002.900 4.4074640 0.39646641
26 1 20 2 1000 10 1003.000 4.8229670 2.14794240
27 1 20 20 1000 1 1039.050 4.4783750 0.16141778
28 1 20 20 1000 10 1039.050 4.3665020 0.85253999
29 1 20 2 10000 1 9902.550 20.7596900 0.04828453
30 1 20 2 10000 10 9903.350 18.8794600 0.26617271
31 1 20 20 10000 1 9943.250 18.5950500 0.02625648
32 1 20 20 10000 10 9937.750 17.6448800 0.14852876
33 1 20 2 25000 1 24388.100 44.4893600 0.02582092
34 1 20 2 25000 10 24388.450 45.3040700 0.12037558
35 1 20 20 25000 1 24423.150 43.3132700 0.02086241
36 1 20 20 25000 10 24429.350 46.4674400 0.09522702
37 4 4 2 1000 1 1003.000 3.2107390 0.45777004
38 4 4 2 1000 10 1002.750 3.0782100 2.22245284
39 4 4 20 1000 1 1039.000 3.0190890 0.15731712
40 4 4 20 1000 10 1038.500 3.1023910 0.82419055
41 4 4 2 10000 1 9899.000 4.8375500 0.04813014
42 4 4 2 10000 10 9892.750 4.7776220 0.26066381
43 4 4 20 10000 1 9934.250 4.6702120 0.02545224
44 4 4 20 10000 10 9942.250 4.5244820 0.14652436
45 4 4 2 25000 1 24399.750 7.5436390 0.02593090
46 4 12 2 25000 10 24403.000 6.8495680 0.11601128
47 4 12 20 25000 1 24420.500 7.1595970 0.02139856
48 4 12 20 25000 10 24450.000 7.4199600 0.09610011
49 4 12 2 1000 1 1002.583 3.6817990 0.40538402
50 4 12 2 1000 10 1003.333 3.6715830 2.21894915
51 4 12 20 1000 1 1039.333 3.7104400 0.16964136
52 4 12 20 1000 10 1038.833 3.6743280 0.82289333
53 4 12 2 10000 1 9903.750 8.2461690 0.04858334
54 4 12 2 10000 10 9907.333 8.5302590 0.27667333
55 4 12 20 10000 1 9940.250 7.5553620 0.02569687
56 4 12 20 10000 10 9937.583 8.1135430 0.27667333
57 4 12 2 25000 1 24386.920 15.5334500 0.02618081
58 4 12 2 25000 10 24390.670 15.8121500 0.12152408
59 4 12 20 25000 1 24429.580 16.7012900 0.02051017
60 4 12 20 25000 10 24424.250 15.8905900 0.09819543
61 4 20 2 1000 1 1002.900 4.4920760 0.37927788
62 4 20 2 1000 10 1001.950 4.4137490 2.17249141
63 4 20 20 1000 1 1039.350 4.3392870 0.15577406

Table 7 (continue)

Parallel Exponential Smoothing

459Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

64 4 20 20 1000 10 1039.050 4.4213620 0.88915073
65 4 20 2 10000 1 9904.150 12.3716900 0.04753417
66 4 20 2 10000 10 9903.900 12.0911500 0.29628936
67 4 20 20 10000 1 9937.800 11.0131900 0.02718215
68 4 20 20 10000 10 9942.750 11.2667100 0.15365591
69 4 20 2 25000 1 24388.600 24.6162400 0.02656839
70 4 20 2 25000 10 24391.200 23.8743000 0.12202390
71 4 20 20 25000 1 24423.650 23.8025900 0.02093147
72 4 20 20 25000 10 24432.800 25.6407900 0.09519576

Table 7 (continue)

As shown in Table 7, it can be stated that the best results and computation cost is the 72nd
simulation, where the MAPE average is about 0.095% at the computation cost around 25.6
seconds. Of course, it is also faster than the first scenario (i.e., exponential smoothing with
single processor), where its computation cost is about 84.48 seconds. Moreover, the MAPE
average of both simulation is relatively close, which is 0.095% is for the 72nd simulation in
the second scenario and 0.044% for the first scenario. This means that the result of parallel
exponential smoothing is reasonable. We also focused on analysing the second scenario. For
example, the result shows that the higher number of bootstrap causes longer computation time,
while higher number of resampling bootstrap makes the lower MAPE, even though certain
number of samples cannot make MAPE significantly better.

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

In this research, a model of time series analysis for conducting exponential smoothing with the
bootstrap methods in parallel computing by utilising the R packages: “forecast,” “foreach,”
and “doParallel” has been presented. The next contribution is that the implementation of the
proposed model has been technically explained in detail so that the code is reproducible.
Furthermore, we conducted some experiments for forecasting asteroid’s orbital elements in
order to evaluate the model and its implementation, along with the analysis of the results.

As for future work, we plan to convert the problem of time series analysis on asteroid’s
orbital elements into regression one. Then, we will solve it by utilising machine-learning
methods, such as fuzzy rule based systems (Riza, Bergmeir, Herrera, & Benitez, 2015), rough
set theory and fuzzy rough set theory (Riza et al., 2014; Nazir, Shahzad, & Riza, 2016b), and
gradient descent (Riza, Nasrulloh, Junaeti, Zain, & Nandiyanto, 2016a).

REFERENCES
Beyer, M. A., & Laney, D. (2012). The importance of ‘Big Data’: A definition. Retrieved from https://

www.gartner.com/doc/2057415/importance-big-data-definition.

Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J. M., Levison, H. F., Michel, P., & Metcalfe, T. S. (2002).
Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus, 156(2), 399-433.

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

460 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and
control. New Jersey: John Wiley & Sons.

Brown, R. G. (1959). Statistical forecasting for inventory control. New York: McGraw-Hill.

Calaway, R., Analytics, R., & Weston, S. (2015). Foreach: Provides foreach looping construct for R.
Retrieved from https://cran.r-project.org/web/packages/foreach/index.html.

Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions.
Journal of Computational Physics, 92(1), 230-256.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1), 107-113.

Dermawan, B., Hidayat, T., & Utama, J. A. (2013). Pengembangan integrator swift_rmvs4 dengan
melibatkan efek termal. Prosiding Seminar Himpunan Astronomi Indonesia.

Derryberry, D. R. (2014). Basic data analysis for time series with R. New Jersey: John Wiley & Sons.

Farinella, P., Gonczi, R., Froeschlé, C., & Froeschlé, C. (1993). The injection of asteroid fragments into
resonances. Icarus, 101(2), 174-187.

Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. Retrieved from http://www.emc.com/
collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf.

Gardner, E. S. (1985). Exponential smoothing: the state of the art. Journal of Forecasting, 4(1), 1-28.

Górriz, J. M., Algeciras, E. P. S., Puntonet, C. G., Salmerón, M., & Martin-Clemente, R. (2004).
Parallelization of time series forecasting model. In Proceeding of 12th Euromicro Conference (pp.
103-110). Vienna, Austria: Ustrian Computer Society.

Gottlieb, A., & Almasi, G. S. (1989). Highly parallel computing. Redwood City, Calif.: Benjamin/
Cummings.

Greenstreet, S., Ngo, H., & Gladman, B. (2012). The orbital distribution of near-Earth objects inside
Earth’s orbit. Icarus, 217(1), 355–366.

Holt, C. C. (1957). Forecasting trends and seasonals by exponentially weighted averages. O.N.R.
Memorandum 52/1957, Carnegie Institute of Technology.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for
R. Journal of Statistical Software, 26(3), 1-22.

Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing:
the state space approach. Berlin: Springer Science & Business Media.

Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for
automatic forecasting using exponential smoothing methods. International Journal of Forecasting,
18(3), 439-454.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational
and Graphical Statistics, 5(3), 299-314.

Kane, M. J., Emerson, J., & Weston, S. (2013). Scalable strategies for computing with massive data.
Journal of Statistical Software, 55(14), 1-19.

Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J. (2007). Fundamental Astronomy (5th

Ed). Berlin: Springer.

Parallel Exponential Smoothing

461Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

Kirchgässner, G., Wolters, J., & Hassler, U. (2012). Introduction to modern time series analysis. Berlin:
Springer Science & Business Media.

Levison, H. F., & Duncan, M. J. (1994). The long-term dynamical behavior of short-period comets.
Icarus, 108(1), 18–36.

Liu, H., & He, Z. (2012). Parallel ant colony optimization algorithms for time series segmentation on
a multi-core processor. In Proceeding of 2012 4th International Conference of Intelligent Human-
Machine Systems and Cybernetics (IHMSC) (pp. 340-343). Nanchang, China: IEEE.

Mirko, K., & Kantelhardt, J. W. (2013). Hadoop. TS: large-scale time-series processing. International
Journal of Computer Applications, 74(17), 1-8.

Murray, C. D., & Dermott, S. F. (1999). Solar system dynamics. Cambridge: University Press.

Murthy, A. C., Vavilapalli, V. K., Eadline, D., Niemiec, J., & Markham, J. (2013). Apache Hadoop
YARN: Moving beyond MapReduce and batch processing with Apache Hadoop 2. New Jersey:
Pearson Education.

Nazir, S., Shahzad, S., & Riza, L. S. (2016). Birthmark-based software classification using rough sets.
Arabian Journal for Science and Engineering, 42(2), 859-871.

Palit, A. K., & Popovic, D. (2006). Computational intelligence in time series forecasting. London:
Springer-Verlag London Limited.

Palma, W. (2016). Time series analysis. New Jersey: Wiley.

Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311-
315.

Piatetsky, G. (2016). R, python duel as top analytics, data science software – kdnuggets 2016 software
poll results. Retrieved from http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-
data-science-software.html.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in
FORTRAN77. Cambridge: Cambridge University Press.

Qian, H., Yang, S., Iyer, R., Feng, X., Wellons, M., & Welton, C. (2014). Parallel time series modeling-a
case study of in-database big data analytics. In Proceeding of Pacific-Asia Conference on Knowledge
Discovery and Data Mining (pp. 417-428). Berlin: Jerman Springer International Publishing.

Riza, L. S., Bergmeir, C., Herrera, F., & Benitez, J. M. (2015). frbs: fuzzy rule-based systems for
classification and regression in R. Journal of Statistical Software, 65(1), 1-30.

Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Slezak, D., & Benıtez, J. M. (2014).
Implementing algorithms of rough set theory and fuzzy rough set theory in the R package RoughSets.
Information Sciences, 287, 68-89.

Riza, L. S., Nasrulloh, I. F., Junaeti, E., Zain, R., & Nandiyanto, A. B. D. (2016a). gradDescentR: An
R package implementing gradient descent and its variants for regression tasks. In Proceeding of 1st

International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE) (pp. 125-129). Yogyakarta, Indonesia: IEEE.

Lala Septem Riza, Judhistira Aria Utama, Syandi Mufti Putra, Ferry Mukharradi Simatupang and
Eddy Prasetyo Nugroho

462 Pertanika J. Sci. & Technol. 26 (1): 441 - 462 (2018)

Riza, L. S., Wihardi, Y., Nurdin, E. A., Ardi, N. D., Asmoro, C. P., Wijaya, A. F. C., & Nandiyanto,
A. B. D. (2016b). Analysis on atmospheric pressure, temperature, and wind speed profiles during
total solar eclipse 9 March 2016 using time series clustering. Journal of Physics: Conference Series,
771(1), 012009.

Sheng, C., Zhao, J., Leung, H., & Wang, W. (2013). Extended kalman filter based echo state network for
time series prediction using mapreduce framework. In Proceeding of Ninth International Conference
of Mobile Ad-hoc and Sensor Networks (MSN) (pp. 175-180). Dalian, China: IEEE.

Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal
of Forecasting, 19(4), 715–725.

Troester, M. (2015). Big data meets big data analytics. Retrieved from http://www.sas.com/resources/
whitepaper/wp_46345.pdf.

Utama, J. A., Dermawan, B., Hidayat, T., & Fauzi, U. (2015). Dinamika orbit 2012 DA14 pascapapasan
dekat dengan bumi. SPEKTRA: Jurnal Fisika dan Aplikasinya, 16(1), 1-5.

Wickham, H. (2014). Advanced R. Florida: CRC Press.

Wisdom, J., & Holman, M. (1991). Symplectic maps for the n-body problem. The Astronomical Journal,
102(4), 1528-1539.

Wlodarczyk, I. (2012). The potentially dangerous asteroid 2012 DA14. Monthly Notices of the Royal
Astronomical Society, 427(2), 1175-1181.

Xie, Y., Wulamu, A., Wang, Y., & Liu, Z. (2014). Implementation of time series data clustering based
on SVD for stock data analysis on hadoop platform. In Proceeding of 2014 9th IEEE Conference on
Industrial Electronics and Applications (pp. 2007-2010). Hangzhou, China: IEEE.

Zhang, G. P. (2012). Neural networks for time-series forecasting. In Proceeding of Handbook of Natural
Computing (pp. 461-477). Berlin, Germany: Springer Berlin Heidelberg.

Zhao, G., Bryan, B. A., King, D., Song, X., & Yu, Q. (2012). Parallelization and optimization of spatial
analysis for large scale environmental model data assembly. Computers and Electronics in Agriculture,
89, 94-99.

Zomaya, A. Y. (1996). Parallel and distributed computing handbook (Vol. 204). New York: McGraw-Hill.

